Small Business Innovation Research/Small Business Tech Transfer

A Low-Cost, High-Precision Navigator, Phase II

Completed Technology Project (2012 - 2014)

Project Introduction

Toyon Research Corporation proposes to develop and demonstrate a prototype low-cost precision navigation system using commercial-grade gyroscopes and accelerometers. During the Phase I effort an uncalibrated brassboard system was built and flight tested using a manned biplane. The brassboard system comprised an experimental single-channel (L1-only) software GPS receiver, and a 720 deg/hr inertial measurement unit (IMU) costing only \$1k. The performance of the brassboard system was comparable to that of a \$42k precision reference system that comprised a dual-channel (L1 and L2) GPS receiver and antenna, and a tactical-grade (1 deg/hr) IMU (\$24k). This tactical-grade performance was achieved by fusing low-cost inertial measurements with attitude and position measurements from a GPS-based attitude (GPS/A) sensor. The Miniature Integrated Direction-finding Attitudedetermining Anti-jam System (MIDAAS(TM)) obtains position, velocity, attitude, and time (PVAT) measurements directly from GPS signals and employs an innovative small single-aperture antenna to compute full 3-D attitude (roll, pitch and yaw) using only two RF channels, leading to a smaller, simpler, lower-cost GPS/A receiver system. During the Phase II program, a form-fit-function prototype system will be designed, built, and flight tested in an operational environment. The prototype performance will be compared with that of a higher-accuracy, more expensive attitude reference system.

Primary U.S. Work Locations and Key Partners

A Low-Cost, High-Precision Navigator

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

A Low-Cost, High-Precision Navigator, Phase II

Completed Technology Project (2012 - 2014)

Organizations Performing Work	Role	Туре	Location
Toyon Research	Lead	Industry	Goleta,
Corporation	Organization		California
Armstrong Flight Research Center(AFRC)	Supporting	NASA	Edwards,
	Organization	Center	California

Primary U.S. Work Locations

California

Project Transitions

0

June 2012: Project Start

December 2014: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/137372)

Images

Project Image

A Low-Cost, High-Precision Navigator (https://techport.nasa.gov/imag e/134869)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Toyon Research Corporation

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Eric Sandoz

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

A Low-Cost, High-Precision Navigator, Phase II

Technology Areas

Primary:

- TX17 Guidance, Navigation, and Control (GN&C)
 - □ TX17.4 Attitude Estimation
 Technologies
 - ☐ TX17.4.3 Attitude Estimation Sensors

Target Destinations

The Moon, Mars, Outside the Solar System, The Sun, Earth, Others Inside the Solar System

